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An Analysis of the Large Deflection of
a Cantilever Beam by the Moiré Method*

Yasunori Murakami?®> and Kazumi MuURAKAMIZ?

An analysis of the elastic deflection of a beam can be performed by the moiré method.
The authors extended to the analysis of the large deflection of a cantilever beam. In general,
the fringe patterns formed in a cantilever beam to which a large deflection is given are curved
due to the effect of strain. The authors found that these curved fringes may be transformed
into nearly straight ones by introducing a proper misalignment into the master grid.

In this paper, a new theory for analyzing correctly the large deflecton of a cantilever beam
is proposed, and the accuracy in measurement by using this theory is discussed.

1. Introduction

The moiré method or the moiré topographic method using two sheets of parallel line grids
is an effective means for measuring the strain or the deflection at any point in a complicated
object. Some problems, for example, two dimensional strain analysis, ‘1> thermal stress analysis (2>
and the deflection analysis of a bent plate 3 were performed by using these methods. As an
another example, an analysis of the elastic deflection of a beam 4> was carried out.

The object of this study is to analyze correctly the large deflection of a cantilever beam
with a single row of slotted holes.

In general, the deflection analysis of a beam by the moiré method is performed as follows.
A model grid is pasted or printed photographically on the beam in such a way that the model
grid lines are ditrected along the longitudinal axis of the beam. When a large deflection is
given to the beam, the model grid lines are rotated and displaced from the initial positions.
When a master grid is superposed upon the deformed model grid, the moiré fringe patterns
formed are curved due to the effect of strain. Therefore, in the case of a large deflection, it
is necessary to eliminate the effect of strain from fringe patterns in order to obtain correctly
the deflection. For this purpose, it is described that the introduction of a proper misalign-
ment into the master grid is effective. And a theory of the deflection analysis by using this
procedure is proposed. Further, the accuracy in measurement by uing this theory is discussed.

2. The theory for measuring a large deflection

In this analysis, orthogonal coordinates (x, y) will be used. Let the lougitudinal and tran-
sverse axes of a beam be taken as the x and y axes, respectively, and a model grid with an
equispaced pitch p, be pasted on the beam in such a way that the model grid lines are dire-
cted along the longitudinal axis of the beam. The equation for these grid lines is expressed as

v=Ipo(I=0, +1, +2, ---.. ), ¢))
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where / is a grid line index. When a lateral load is applied to the beam, the deformed model
grid lines contain both informations of deflection and strain. But, when the deflecton is me-
asured in the neighborhood of the neutral axis of the beam, the equation for the deformed
model grid lines can be written as

_ . Ip,
y=—tan i.x +(_:6$ v 2)

where i is a slope.
On the other hand, the equation for the master grid lines with an amount of misalignment ¢

is expressed by

— kp _ __kp,
y=tan f-x+ o= tan f-x td+2)cos v

(kZO, :{:1) :I:z) """ )y (3)

where k is a grid line index, p is a pitch and 2 is an amount of mismatch.
By superposing the two grids expressed by Egs. (2) and (3), moiré fringes are formed, which
are expressed by the following fringe index equation.
k—!=m (m=0, +1, £2,--.--- ), 4)
where m is a fringe index.
Substituting Eqgs. (2) and (3) into Eq. (4), we have a fringe-slope equation as follows:

y

klzz/\
— 1o\ =l X
@) m:O\LL\
e} m=-1 1=0.

Fig.1 Geometry of moiré fringe.

1
Y={+7) cosv—cos i

{42 sing + sin ifx +mp(l+2). )
The thick lines shown in Fig. 1 indicate these fringes.
Putting y=0 in Eq. (5), we have

_ mp(1+2) .
X=0¥2) sind+sin i (6)

Now, let the fringe indices of any two adjacent fringes on the x axis be m, and ma4;, and

also the interval between these two adjacent fringes be 4. Then, from Eq. (6) we obtain

p(1+2) _ p(1+2) %)
) sin # +sin i (1+2) sinf+sin i’

5:(m11+1"‘m“1)(1+1

where M is the difference in fringe indices between two adjacent fringes and has a value of +1.
When the effect of the strain is taken into comsideration in Eq. (2), it is transformed into

_ . Ip.(1+¢€) )
y=—tan 1ex+ "?(E—i—‘° ‘ (2 )

Then, the equation for the interfringe-spacing is expressed in place of Eq. (7) by
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The relative error Ré between the interfringe-spacings e and ¢ is given by

__|6—20e
Ra_( =

. 9

Fig. 2 shows the change in the relative error R§ due to the tensile strain & under the cond-
ition of i=10° constant. In the figure, ¢ and A are used as parameters. As is apparent in
the figure, it is seen that the relative error is decreased with the increase of misalignment
and mismatch values. Figs. 3(a) and (b) show the model fringe patterns formed in cantilever
beams for the cases that €=0 and &540, respectively, under the condition that #=0 and 21=0.
As is apparent in the figure, the fringes are straight and curved for the cases that £=0 and
£+0, respectively. As a matter of course, it is easier to measure the interfringe-spacings in
Fig. 3(a) than in Fig. 3(b). The introduction of a proper misalignment into the master grid
can transform the curved fringes into nearly siraight ones. Fig. 4 shows the fringes transformed
from those of Fig. 3(b) by giving the misalignment of 6=30°.

This transformation may be performed easily by using a rotating device of the master grid.
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Fig. 4 Model fringe patterns formed under Fig.5 Shape and dimensions of the

the condition of ¢#=30°and 2=0. specimen.



78
Now, Eq. (7) yields the expression of slope i as
i=arc sin(1+2)(1-\%9—sin 9). 10)

The sign of M plays an important role in obtaining correct slopes, but the determination of
this sign from one fringe pattern is difficult. However, this sign can easily be determined by
using the procedure proposed by the authors previously ¢5>. When the master grid superposed
upon the deformed model grid is shifted in the direction parellol to the y axis by an amount
4, Eq. (6) is transformed into

mp(1l +2) J(1+ %) cos?

X=({+)sin0+sini T (T+2)sin O +sini’

1)

The first term in the right hand side of the above equation has a constant value under a
given deflection, and the second term shows the displacement of fringes produced by the shift
of the master grid by 4. The second term is useful for determining the sign of M. When the
master grid is given a positive shifting . (when the shifing is given in the direction toward
increasing the positive coordinate, the sigt of . is prescribed to be positive), the fringes cutting
the x axis are shifted toward the positive or negative direction (the positive or negative dire-
ction means that of increasing the absolute value of coordinate on the axis), according as(1 + 1)
sing +sin i is larger or smaller than zero, respectively. This direction of the fringe shift can
be correlated with the sign of M as follows. If the fringes cutting the x axis are shifted
toward the positive or negative direction, then M is 1 or —1, respectively.

Besides, let the difference in the deflection of the beam between any two adjacent fringes be
w, then we obtain the relation

w=4 tan arc sin (1+2)(I\%—sin9), (12)

since w=¢ tan i from Eq. (10). Therefore, the total deflection of the beam at the fringes of
nth order is obtained by summing up the individual deflection as follows:

g g A
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Fig.6 Some examples of moiré fringe patterns.
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n
W= ZWJ.
j=1

3. Experimental results

In this experiment, the nitro-cellulose resin with a camphor content of 242 was used,
which had the elastic modulus of 210kg/mm?2 and the Poisson’s ratio of 0.37. The shape and
dimensions of the specimen adopted are shown in Fig. 5. As is seen in the figure, a cantilever
beam with a single row of four slotted holes was used, and the ratio h/r of the slotted holes
was varied in four ways, that is, oo, 3, 1.5 and 1. Four kinds of lateral loads, that is, 2, 4, 6
and 8kg were applied to the beam at the position shown in the figure.

Figs. 6(a) to (d) represent the moiré fringe patterns obtained, in which the grid with the
pitch of p=0.495mm were used under the condition that §=6° and 2=0. Figs. 7(a) to (d) and
8(a) to (d) show the distributions of slopes and deflectiones obtained from these fringe pat-
terns, respectively.
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Fig.7 Distributions of slopes along the longitudinal axis of the beam.
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In the figures, full circles show the experimental results, and full lines in Fig. 8 indicate

the results obtained through the measurement by a caliper. A good agreement is seen in both
expermental results in Fig. 8.
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Fig. 8 Distributions of deflections along the
longitudinal axis of the beam.

4. Conclusions

From the experimental results mentoned above, the folloming conclusions may be drawn.

(1) The slope and deflection of a cantilever beam to which a large deflection is given, can
be obtained by using Egs. (10) and (11), respectively.

(2) The curved fringe patterns formed in a cantilever beam to which a large deflection is
given, can be transformed into nearly straight ones by introducing a proper misalignment into
the master grid, thus raising the accuracy in the measurement of interfringe-spacings.

(3) The sign of M introduced into Eqs. (10) and (12) has an important role for obtaining
the correct deflection, and can easily be determined by the master grid shifting procedure
proposed by the authors previously.
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