SOME CONJECTURES ON
“COMMODITY TECHNOLOGY” ASSUMPTION

M #H = 5
By Yukio Fukui™®

1 Introduction

The new System of National Accounts (SNA), which was proposed in 1968 by the United
Nations, includes a general input—output accounting framework. Use table U=(ui;) of
commodities i consumed by industries j and make table V=(vi;) of industries i producing
commodities j are its main two tables. But it does not contain an input—output table A=(a.,) of
commodities i for commodities j. So, the SNA input—output framework is not directly useful
for any type of conventional input—output analysis.

To convey the information as presented in this framework, the SNA suggests conversion
techniques based on alternative set of assumptions.

First is the industry technology assumption, which supposes that the industries are
homogeneous as far as production techniques are concerned. This implies that the inputs of
industries are proportional to their total outputs. Second is the commodity technology
assumption, which supposes that technology is intrinsic to the commodity wherever it is
produced, implying the inputs of commodities are stable and unique.

Which assumption to choose, including all variants of the two assumptions, has been
considered by, among others, Stone, Bates and Bacharach (1963), ten Raa, Chakraborty and
Small (1984), and Gigantes (1970). ten Raa et al critised the industry technology assumption on its
sensitivity to base—year prices.? McGilvray and Morrison (1982), on the other hand, took the
assumption to be more preferable for a practical reason, writing that “the industry technology
assumption enables a more detailed classification of commodities than industries to be used” (p.
246). Olsen (1984) and Thage (1982) hold the same view on this point.

Since we are interested in computational problems, we focus our attention on the commodity
technology assumption. By setting Ac as a commodity—by—commodity table under the
assumption, the use table can be written as U=Ac V'. Furthermore, with g=V1, we define the
two matrices:

B=Ug™! matrix of industry input coefficients

C=vyg! matrix of industry products—mix
Here g denotes a diagonal matrix with the elements of g in the diagonal.
Then we have

Ac=BC™! (1).

While it is well known that the commodity technology assumption will yield negative
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coefficients (e. g. United Nations (1968, Chapter 3) and Stone, Bates and Bacharach (1963, pp.
16—18)) we stress however that the assumption has potentially a more serious shortcoming; it
is likely to yield economically meaning less negative column sums. Although the Stone
method (Stone (1961, pp. 39—41)), in which joint products are handled to be minus inputs, will
yield negative coefficients, his procedure is commonly used in practice in Japan, for example
(Administrative Management Agency (1984, p. 22)).

Therefore Ac with some negative entries does not discourage us from using it as a tool for
applied input—output analysis. However, to be economically meaningful, all the column sums
must be nonnegative; otherwise they imply the instability of economic systems.

Section 2 introduces the definition of dominant diagonal of C, and attacks the commodity
technology assumption on computational grounds theoretically. Section 3 evaluates the
drawback by simulation, and presents three conjectures of the possibility of column sums being

under zero. This section also illustrates examples. Section 4 concludes the paper.

2 Theoretical View

Consider the static input output system: y=(I—A)~'f where y is the n—length column
vectors y= lyi} and f= i, and A is the n X n matrix, with A=0. Here, y: is the total output of
- commodities y;, and f; is the final demand for commodities i. Notice that for these steps to be
meaningful for a specified {20, (I—A)~' must exist and this inverse must be such that y=0. A
necessary and sufficient condition for (I—A)~' 20 is that all principal minors of A be positive
(Hawkins and Simon (1952)). Further, the Solow condition on column sums of A is a sufficient
condition for it. Notice that even if column sums of A are over unity, it does not necessarily
mean the instability of economic systems. If the column sums are under zero, however, it means
the instability.

Before we prove the very strong possibility of some column sums of A being under zero, we
impose the following assumption on the matrix of industry commodity shares C.
ASSUMPTION: C is dominant diagonal

Here, C=(cis), 1, j=1, .., n, is said to have a dominant diagonal (Taussky (1949, p. 672)) if

| cii | >C; for all j
with C;=xx; | cxi | . The associated sums are:
Mi=cii+ 2t i+icki for j=1, .., n—1
m;=cj;— ZR=+1Ckj for j=1, .., n—1
Mi*=3h=cx for all j
mi* =cji— 2 k= iCkj forall j (2)

First we discuss our assumption. This is not a strong assumption (Divay (1982, p. 194)) when
each industry concentrates its characteristic products, which is always the case.

We now state two lemmas for later use.
LEMMA 1 (Taussky (1949, pp. 672—673)): Let C=(cu;), i, j=1, . . , n be a real matrix which has a

dominant diagonal. Then C is non—singular.
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(Proof) Assume the contrary. Since C is singular, it follows that the system of equations
Sh-ick xk=0, for all j,
has a non—trivial solution x1, . . x.. Let r be one of the indices for which | xi |, j=1,..,n,is
maximal. The rth equation implies
[ce | I% |l ZZ0si e | | x| 2Co | x4 |
where C.= =8« | cwr | . This contradicts the hypothesis. Q. E. D
LEMMA 2 (Price (1951, p. 500)): Let the matrix Ci1=(ci), i, j= 2, . . , n, denotes a dominant

diagonal matrix, and

’

ciit S h=zcu; xk=0, j=2,..,n, (3)
be a system of equations, and let some number r>0 be such that
ci | >/1) | eri | + 38—z, k5 | cu | j=2,...n. (4)
If the system has a unique solution, x=. . . , Xu, then
max(| x> |, .., | x. D<r. (5)

(Proof) From (4), we get

[cii | >Z8as, wmil e, j=2, ..., n
Therefore, A is not singular by lemma 1 and (3) has a unique solution. Assume that (5) is not
true. Let | xi | =max(| x=|,..., | xo D=r1. From (3) it follows that —cixi=c1i+

SR=2 =i cuixe. We get by means of the elementary inequality

lewl Ixil S Ten | +38=s, wmi e | [ x|,
so that

[ci | A/ [ en | + =z, wmi | i |,
This contradicts (4). Q.E.D.
THEOREM 1 (Price, 1951, p. 498): Let C be a dominant diagonal matrix. Then

0<m.. m.=|C|=M:.. M. (6)
(Proof) The assumption of C and m;>0 for all j assure the first inequality. Consider the
equation system (3) with the coefficient matrix Ci1=(cis), i, j=2, . ., n, taken from C. Then the
definition of C implies that (4) is satisfied with r=1. Let the solution of (3) be x=V, ... x."

Multiply the jth row of C by x;,'", j=2, .., n, add to the first row and use (3) to get
| C| =(cii+caxaV++ + - +emxa ) | Cii |

Thus the inductive reasoning follows

| C| =(ClI+CQIX2(l)+ LR +c...xn(1)) (C:z+C32X3(2)+ S +c..gx..<2’) * * * Can.

Since | x{¥ | <1 forall k and j, we get (6). Q.E.D.

The theorem contains the following corollary as a specal case.

COROLLARY L:If C-'=(cs*), i, j=1, . . . n, then

I/Mi*Sci*=1/m:* (7

(Proof) Principal minors of C are invariant under any permutations of its same rows and

columns, thus we can take i=1 without loss of generality. Then
m | Cu|S|CI=Mi|Cunl.

Since cii*=|Cui | /| C |, Mi*=M, and M.* =M., we get (7). Q. E. D.
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THEOREM 2: Let C be a nX n non—negative matrix with the same column smus A . Then the in-

verse C™' has the same column sum 1/ .

(Proof) With 1=(1,..,1),C'1=(A,.., A)= Al. Premultiplying (1/ 1) C-'gives(1/4)1=

c'. Q.E.D.
Since each column sum of C is unity by definition, it follows from theorem 2 that the inverse

of C has the same column sums;

Cc'1=1. (8)
Using Mi* =1, (7) can be written
1<c;*<1/m* (9).

The above inequality suggests that 1/m;*, upper limit of c;i*, tends to decrease with c;i, as
given in (2). Before proceeding we present the following theorem.
THEOREM 3: Column sums of Ac are same across all commodities, if and only if all column sums
of B are equal across all industries.
(Proof) Ac’ 1=C""! B' 1=C"!s, =s* say, with s=B’ 1. Premultiplying C’ to the third
equation, we get s=C’s*. [f s* =31, then we get immediately s=51. Conversely, substituting s
=35 1 into s*=C""'s to get sx=5C'~' 1=5 1. Last equation holds from (8). Q. E. D.
Now the jth column sum of Ac, given in (1), can be written by
Sk =cii¥si*+ Z0s;cii*si (10
where si is the ith column sum of B. The crucial point is that, the second term can be greater
than first term in absolute value, because cii* 21 and 2ici;* =1 imply that at least one element
must be negative. More precisely, if a negative element is sufficiently large, si* is likely to be
negative as well. The possibility will getting higher, in particular, if the corresponding s: is
also large. On the other hand, if the first term is much greater than the second, s;* will be over
unity. This is most likely to occur when the corresponding s; is large and some si’s (i#]) are
small.
The issues involved in analyzing these cases will be illustrated by the following simplest
case, n=2. Then (10) can be written
S1% =Ci1 %81t Cor ks, S2¥ =CiuksitCozkse
Recall that cii*¥+czi*=1 and ciz*+c2*¥=1 to get
S1* =satcCii *¥(s1—S2), S2* =81t Ce2¥(s2751).
These imply that s\ % <0 if s1<s: and s2/(sz—s1)<ci1 %, s2<0 if 51 >s2 and s:1/(s1 —s2)<cCu2*,
and s)* =s»* only if sy=s. Consider the example.
C= /0.7 0.4\ ,s:=0.8, and 52=0.2.
<0.3 0.6>
Then it is easy to get the inverse of C and column sums of Ac as
Cl'= 2 —1.3\ ,si*=14, and s2*=—0.58.
(5 7o)
Note the following features of the possibilities in the example. First, a higher value of s: and

lower value of s= result in higher value of s * and a lower value of sz*. In the case si =0.9 and
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s2=0.1, we get s1* =1.7 and s2= —0.94 keeping c;; fixed. Second, a higher value of k result in
lower value of si* and in a higher value fo sz*. At ci1=c2:=0.9, we get s: * =0.86 and s==

0.14 keeping s: and s= fixed. Finally, s\ * =sz%* =0.5 at s1 =s2=0.5, coincident with theorem 3.

3 Simulation

In the previous section, under the assumption of commodity technology, we showed that
some s;"* will be possibly under zero (CO) when k is small and/or s; is small and some s:’s (1%
j) are large; conversely s;* over unity (C1) when k is small and/or s; is large and some s:’* (i#
j) are small. In practice, further knowledge concerning the extent to which the validity of our
argument can be proved is needed. While it is not our intention to furnish a comprehensive
answer for this issue, however, we hope to shed some light on it by presenting the results of a
set of carefull desighed Monte Carlo experiments.

These experiments are preformed under various conditions. At first the values of c¢i; for the C
matrix were generated by the following simple scheme:

ci=ug; Chi=ui X (1 —ui)/ 2 e iuij \

The values of ui's were randomly generated from a uniform distribution on [k, 1], where k
means the proportion of characteristic product in total value of products of each industry. The
value of k must be over 0.50, which is due to the fact that C is dominant diagonal. Then the
values of ui; (1#]) were also generated from a distribution on [0, 1] independently of uj;;. These
wi; (1#]) were multiplied by (1—ui)/ Z%;u; so as to make the jth column sum equal to
unity. Next the values of s;, the jth column sum of B were also generated from a uniform
distribution on [0, 1].

3—1 Effects of n and k on s;

The first simulation is conducted to study the influence of the number of commodities and
the value of k on si*. This was specified by the following parameter values; k=0.5, 0.9, and n
=4, 22. When n=4, we carried out 10 experiments, each with 160 random vector s and 200
random matrix C. When n=22, we conducted 20 experiments, each with 10 random vector s
and 20 random matrix C.

Table 1 shows the results. The first row shows that for n=4 and k=0.5, the proportions of
Ac’s with CO and C1 are 49.6 and 48.1 per cent respectively. The second row shows that for k=
0.9 the per cent is considerably smaller than the first with the same n. Notice also that the same
downward tendency can be obtained for n=22. Both in n=4 and in n=22 the results agree with
the theoretical consideration in Section 2. The following conjecture is to this effect.
CONJECTURE 1: The more the extent that a number of commodities are produced in more than one
industry as secondary products, the higher is the possibility of Ac having colums sums under zero and/ or
over unity.

A comparison of the first two rows for n=4 and the second two rows for n=22 reveals
substantively divergent results. According to row 1 and row 3, the possibility of CO for n=22

exceeds the possibility of CO for n=4 with the same k by about 50 per cent. This indicates that
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TABLE 1 Simulation Results (0Ss:<1) %

n k Num of Ac CO (under zero) Cl (over unity) C0+C1 Co0-C1

4 0.5 320,000 158,735[49.6%
0.9 320,000 29,260 [9.1%
22 0.5 4,000 3.877[96.9%
0.9 4,000 2,007(50.2%

178,873) 154,077(48.1%](172,245) 88,587 224,225
(34,324) 27,795 [8.6%] (31,647) 3,043 54,012
(11,302)  3,877[96.9%] (11,011) 3,759 3,996

I
]
]
] (2.742)  1,526[38.2%] (1.684) 821 2,712

* Numbers in brackets are percentages of Ac with CO (Cl) column sums, and numbers in parentheses
are these of CO (Cl) column sums. CO+ Cl are numbers of Ac with CO and Cl column sums. CO-Cl
are numbers of Ac with CO or Cl.

the magnitude of the number of commodities effect is large. The similar results are obtained for
row 2 and row 4 although the percentages are lower. The simulation results lead to the
following conjecture.
CONJECTURE 2: The more disaggregated input—output tables, the higher is the possibility of Ac
having column sums under zero and/or over unity.
REMARK 1: It is a well known fact that a proportion of secondary products of the total output
of industries increases with diaggregation of input—output tables. See Stahmer (1982, p. 174)
and United Nations (1973, p. 34). This seems to suggest the close correspondence between the
conjecture 1 and conjecture 2.

3-2 Effects of [si, su] on s:

The simulation described above urged us to check the effects of a range of si on si*, because
it may be unrealistic to suppose that s: lies between 0 and 1. So, in the second simulation, by
setting the lower limit si. and the upper limit su, we take the random variable s: to distribute
uniformly over the [su, si.] to neglect the variable outside the interval.

We caried out 45 experiments for k=0.5, 0..7, 0.9, and (s1., su)=(0.28, 0.72), (0.26, 0.74), . .,
(0.0, 1.0). For each set of values of k and (s, su), 10 random vectors and 20 random matrix C
were generated. For each pair of s and C, the corresponding si* was calculated.

Figure 1 shows the experimental results. The proportions of CO decrease with k. For k=0.5
the possibilities of CO are strongly rising over the range from (0.24, 0.76) to (0.06, 0.94), and
then close to unity; for instance, the per cent of CO is only 0.9 per cent at (0.26, 0.74) and 77.0
percent at (0.10, 0.90). The dotted curves of CO+Cl1 lie entirely above the CO curve. For k=
0.7 and 0.9 the results are similar although the rapid increases now occur at (0.18, 0.82) and
(0.04, 0.96) respectively.

Thus, the graph reveals two important things. First, the possibilities of CO and CO+C1 and
are decreasing with k, suggesting the conjecure 1. Second, these posibilities are increasing
with the range of si” s. This observation supports the following conjecture.
CONJECTURE 3: The wider apart the range of s/’ s, the higher is the possibility of Ac with column

sumu over unity and/or under zero.
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FIGURE 1 Column Sums of Ac and Range of [si., s\]

4. Conclusion

We establish conjecture 1, 2 and 3 by the mathematical cosidetations and experimental
results. We suggest that Ac is very risky in the sense that it will yield column sums under zero
orover unity. These possibilities are especially true in the realistic case in which input—output
k must be very large and the range of s must not be wide apart to justify the use of Ac. These
fact cast doubt on the justification of Ac as theoretical sound from a computational ground. In
fact cast doubt on the justification of Ac as theretical sound from a computational ground. In
particular, our observation reveals the true reason why a great many countries have not taken
the commodity technology assumption.

Department of Economics, Osaka Industrial University.

Footnotes

1) This research was supported in part by a grant from Osaka Industrial University. I would like to
thank Prof. Yoshinori Morimoto and Prof. Nobuko Nosse for their helpful comments.

2) Cressy (1976) also indicates this shortcoming (p. 128). ten Raa et al proposed the so—called
by—product technology assumption, based on the commodity technology assumption. By treating
commodity by—products as negative inputs, they successfully avoid the dependence on the choice of
base—year prices.
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